Well-posedness for compressible MHD systems with highly oscillating initial data
نویسندگان
چکیده
منابع مشابه
Global Well-posedness for the Compressible Navier-stokes Equations with the Highly Oscillating Initial Velocity
Cannone, Meyer and Planchon [3] proved the global well-posedness of the incompressible Navier-Stokes equations for a class of highly oscillating data. In this paper, we prove the global well-posedness for the compressible NavierStokes equations in the critical functional framework with the initial data close to a stable equilibrium. Especially, this result allows us to construct global solution...
متن کاملWell-posedness of the Muskat problem with H2 initial data
Article history: Received 30 December 2014 Accepted 13 August 2015 Available online xxxx Communicated by Charles Fefferman MSC: 35R35 35Q35 35S10 76B03
متن کاملWell-posedness for compressible Euler with physical vacuum singularity
An important problem in the theory of compressible gas flows is to understand the singular behavior of vacuum states. The main difficulty lies in the fact that the system becomes degenerate at the vacuum boundary, where the characteristics coincide and have unbounded derivative. In this paper, we overcome this difficulty by presenting a new formulation and new energy spaces. We establish the lo...
متن کاملWell-posedness for compressible Euler equations with physical vacuum singularity
An important problem in the theory of compressible gas flows is to understand the singular behavior of vacuum states. The main difficulty lies in the fact that the system becomes degenerate at the vacuum boundary, where the characteristics coincide and have unbounded derivative. In this paper, we overcome this difficulty by presenting a new formulation and new energy spaces. We establish the lo...
متن کاملMaximal dissipation and well-posedness for the compressible Euler system
We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2016
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4961157